Active B_{12}
The Next Level of B12 Testing

Ralph Green M.D. Ph.D. F.R.C.Path.
Professor and Chair
Department of Pathology and Laboratory Medicine
University of California, Davis

Specialty Labs Web Conference
December 13, 2007
At the end of the program, participants will be able to describe:

- The clinical presentation of patients with vitamin B12 deficiency.

- The physiology of B12 and the B12-binding proteins.

- The clinical utility of tests to diagnose B12 deficiency with special reference to active B12.
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobilamin (Active B12) and its usefulness
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin (Active B12) and its usefulness
Pernicious Anemia: Description (Cabot, 1908)

Anemia associated with a diagnostic triad of:

- Sore tongue (glossitis)
- Jaundice
- Spinal cord damage

Pernicious Anemia was an inevitably fatal disease prior to the Nobel Prize-winning discoveries of Minot, Murphy and Whipple.

Kaplan-Meyer survival curve for 320 patients with pernicious anemia pre-1926 (Cabot 1908)
The Conquest of Pernicious Anemia &
The Characterization of Vitamin B12

Minot, Whipple & Murphy Nobel Prize for
Physiology & Medicine 1934 – “Cure of PA”

Karl Folkers and Lester Smith 1948 – Anti-pernicious
anemia principle crystallized from liver; B12 named

Dorothy Hodgkin – Nobel Prize for Chemistry
for studies on X-Ray crystallographic structure
of B12 and proteins
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin (Active B12) and its usefulness
Prevalence of B12 Deficiency in the United States

- Adults age >65 years
 - 2-3% have pernicious anemia
 - 30-40% have food B12 malabsorption

- Sacramento Area Latino Study on Aging (SALSA)
 - Elderly Latinos, age >60 years
 - 6.5% with total serum B12 <200 pg/ml
 - 18% with total serum B12 200-300 pg/ml

World Population by Age

Source: United Nations Data
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin (Active B12) and its usefulness
Vitamin B12 Absorption

Intestinal Lumen

Intestinal Cell (ileum)

Blood

IF-B12

IF-B12

IF

IF

B12

B12

B12

B12

B12

B12

B12

TC (transcobalamin)

TC

TC

TC

TC

TC

CH₃-B12

CH₃-B12

CH₃-B12

CH₃-B12

CH₃-B12

CH₃-B12

B12-TC

B12-TC

B12-TC

B12-TC

B12-TC

B12-TC

Adenosyl-B12

Adenosyl-B12

Adenosyl-B12

Adenosyl-B12

Adenosyl-B12

Adenosyl-B12

Vitamin B12
Vitamin B12 Cellular Uptake

Blood → B12-TC → B12-TC → B12

TC → CH₃-B12 → Adenosyl-B12

Tissue Cell
Vitamin B12-Dependent Reactions

Homocysteine* + MethylTHF → Methionine + THF

Methylmalonyl-CoA → Succinyl-CoA

Methylmalonic Acid*

*Levels rise in B12 deficiency
Plasma B12 Transport Proteins

<table>
<thead>
<tr>
<th></th>
<th>Haptocorrin (TC I + III)</th>
<th>Transcobalamin (TC II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>granulocytes</td>
<td>endothelial cells, gut</td>
</tr>
<tr>
<td>Transport functions</td>
<td>storage, excretion of B12 analogues, antimicrobial</td>
<td>cellular B12 uptake</td>
</tr>
<tr>
<td>Binding specificity</td>
<td>low specificity, binds B12 analogues</td>
<td>binds B12 with higher specificity</td>
</tr>
<tr>
<td>Membrane receptors</td>
<td>non-specific asialoglycoprotein receptors on hepatocytes</td>
<td>specific receptors on most cells</td>
</tr>
<tr>
<td>Saturation</td>
<td>high (mainly "holo")</td>
<td>low (mainly "apo")</td>
</tr>
<tr>
<td>Fraction of total B12</td>
<td>70-90%</td>
<td>10-30%</td>
</tr>
<tr>
<td>Plasma clearance</td>
<td>slow (t$_{1/2}$ ≈ 10 days)</td>
<td>rapid (t$_{1/2}$ ≈ 6 min)</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>60,000</td>
<td>38,000-45,000</td>
</tr>
</tbody>
</table>
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin (Active B12) and its usefulness
Vitamin B12 Deficiency

Causes:
- Dietary deficiency (rare, primarily occurs in strict vegans and their offspring)
- **Malabsorption**
 - Nitrous oxide (irreversibly oxidizes B12)
 - Transcobalamin deficiency
 - Genetic enzyme defects
Causes of Vitamin B12 Malabsorption

- Atrophic Gastritis (achlorhydria or loss of stomach acid)
- Autoimmune production of IF or parietal cell antibodies (pernicious anemia)
- Gastrectomy
- Pancreatic insufficiency
- Bacterial overgrowth (H. pylori)
- Diphyllobothrium latum (fish tapeworm)
- HIV Infection
- Ileal disease or resection
- Selective Vitamin B12 Malabsorption –Immerslund-Gräsbeck Syndrome (Autosomal Recessive Megaloblastic Anemia (MGA1) –defects in cub, amn.
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin (Active B12) and its usefulness
Symptoms and Signs of Vitamin B12 Deficiency

Clinical Manifestations:

- Megaloblastic anemia
- Subacute combined degeneration (SACD) (demyelination with central and peripheral neuropathy, most notably in spinal cord)
- Gait ataxia
- Cognitive deficits (can be Alzheimer-like)
- Glossitis
- Increased risk of vascular disease, cancer, neural tube defects
- Osteopenia/osteoporosis
Patients in Whom to Suspect Possible B12 Deficiency

- Symptoms and signs of B12 deficiency
- Anemia with or without macrocytosis
- Neurological disturbances with or without anemia
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- **Diagnosing B12 deficiency**
- Holotranscobalamin (Active B12) and its usefulness
Diagnosis of Vitamin B_{12} Deficiency

- Macrocytic megaloblastic anemia with or without neurological involvement.
- Atypical presentations (neurological syndrome without anemia or macrocytosis
- Low plasma B12 as an isolated lab finding
- Raised plasma metabolites (methylmalonic acid and homocysteine
- Low transcobalamin B12 (HoloTC) = “Active B12”
Approach to the diagnosis of Pernicious Anemia

Assessing B12 Status

Total Serum B12

Holohaptocorrin

- Fraction of total B12 bound to haptocorrin.

~70-80%

Holotranscobalamin (Active B12)

- Fraction of total B12 bound to transcobalamin.
- Delivers B12 to all tissues.

~20-30%

Wide-Range
<10% to >70%
Vitamin B12 Deficiency

Scope:
- History of B12 deficiency
- Prevalence of B12 deficiency
- Review of normal physiology
- Causes of B12 deficiency
- Clinical Manifestations of B12 deficiency
- Diagnosing B12 deficiency
- Holotranscobalamin *(Active B12)* and its usefulness
Theoretical Advantages of HoloTC (Active B12) in the Diagnosis of B12 Deficiency

- TC delivers B12 to all tissues; haptocorrin does not. Except on the liver no cellular receptors exist for the B_{12} carried by haptocorrin (HC)
- Genetic TC deficiency leads to life-threatening functional B12 deficiency; genetic haptocorrin deficiency is relatively benign.
- HoloTC has a short half-life (~6 min) and is therefore expected to fall early during states of B12 malabsorption.
- It can take months, even years, for a significant fall in HoloHC levels and so the more rapid decline in HoloTC (Active-B12) may be masked when measuring total serum B12
Not all vitamin B_12 in serum is active

Around 20% of circulating B_12 is carried on transcobalamin.

- Holohaptocorrin (holoHC)
 - Biologically inert

- Active-B12 (holotranscobalamin)
 - Biologically active

- $70\text{-}90\%$

- $10\text{-}30\%$

- MMA → Hcy → Methyl-B_{12} → Adenosyl-B_{12} → TCII

- Adenosyl-B_{12} → Methyl-B_{12}
Sequence of Changes in Developing B12 Deficiency*

1. Early: low holoTC (Active B12)

2. Cellular: low serum B12, depletion of body stores

3. Metabolic: increased Hcy and MMA

4. Clinical: macrocytic anemia, neurological impairment

*Victor Herbert 1987
How vitamin B$_{12}$ deficiency develops (hypothesis)

<table>
<thead>
<tr>
<th>Normal B$_{12}$ status</th>
<th>Early serum depletion</th>
<th>Cell depletion</th>
<th>Damaged metabolism</th>
<th>Clinical damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Active-B12 ↓</td>
<td>Active-B12 ↓</td>
<td>Active-B12 ↓</td>
<td>Active-B12 ↓</td>
</tr>
<tr>
<td>Active-B12 > 35 pmol/L</td>
<td>MMA < 271 nmol/L</td>
<td>MMA & tHcy ↑</td>
<td>MMA & tHcy ↑</td>
<td>MMA & tHcy ↑</td>
</tr>
<tr>
<td>MMA < 271 nmol/L</td>
<td>tHcy < 12 µmol/L</td>
<td>tHcy ↓</td>
<td>tHcy ↓</td>
<td>tHcy ↓</td>
</tr>
<tr>
<td>B$_{12}$ > 300 pmol/L</td>
<td>Normal erythropoiesis</td>
<td>MRI & tHcy</td>
<td>MRI & tHcy</td>
<td>MRI & tHcy</td>
</tr>
<tr>
<td>Normal erythropoiesis</td>
<td></td>
<td>MRI & tHcy</td>
<td>MRI & tHcy</td>
<td>MRI & tHcy</td>
</tr>
</tbody>
</table>

Active-B12 levels react early in the process.

1. [Modified from V. Herbert, Am J Clin Nutr 1994](#)
Assessing B12 Status

Total Serum B12

- ~70-80% Holohaptocorrin
 - Fraction of total B12 bound to haptocorrin.
- ~20-30% Holotranscobalamin
 - Fraction of total B12 bound to transcobalamin.
 - Delivers B12 to all tissues.

Wide-Range <10% to >70%
TC-B12 or Active B12 in B12 Absorption and Transport

Dietary B12

Stomach

Intestinal Lumen

IF

B12

IF-B12

Ileal Cell

Portal Circulation

TC-B12

Stool

Liver

Bile

HC-B12

Extrahepatic Tissues

General Circulation

TC-B12

TC-B12

HC-B12

Kidney

Urine
Active-B12 reaction schematics
2-Step sandwich MEIA

Active-B12 specific Mab (mouse, monocl.) immobilised on latex microparticle.

Sample B12 bound to transcobalamin (red) and haptocorrin (magenta).

Only B_{12}-TC (Active-B12) will bind to solid phase.

Suspension moved to glass fiber matrix and washed to remove unbound sample.

Anti-TC:ALP conjugate (mouse, monocl.) is added.

Conjugate binds to TC bound to solid phase.

Unbound conjugate is removed.

Rate of fluorescent MU formation is directly proportional to [Active-B12] in sample.
Active-B12 levels are low in patients with biochemical signs of vitamin B$_{12}$ deficiency

B$_{12}$ deficiency defined by 9:
- MMA >400 nmol/l and
- Normal renal function

Data suggests improved identification of B$_{12}$ deficient patients with Active-B12 compared to total serum B$_{12}$.

Recently Proposed Algorithm for B_{12} Deficiency Subjects

Subjects at risk of B_{12} deficiency

- $\text{B}_{12} < 150 \text{ pmol/L}$: Likely deficient
- $\text{B}_{12} 150-250 \text{ pmol/L}$: Additional testing, like Active-B12
- $\text{B}_{12} > 250 \text{ pmol/L}$: Unlikely deficient

Resolve B_{12} indeterminate samples

Note: Due to many false negative total B_{12} results the negative population could also be confirmed with Active-B12 TC assay.

Adapted from Schneede J., Scan J Clin Lab Invest 2003; 63: 369 - 376
Approach to the diagnosis of Pernicious Anemia